Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38578162

RESUMO

A new series of 4-nitroimidazole bearing aryl piperazines 7-16, tetrazole 17 and 1,3,4-thiadiazole 18 derivatives was synthesized. All derivatives were screened for their anticancer activity against eight diverse human cancer cell lines (Capan-1, HCT-116, LN229, NCI-H460, DND-41, HL-60, K562, and Z138). Compound 17 proved the most potent compound of the series inhibiting proliferation of most of the selected human cancer cell lines with IC50 values in the low micromolar range. In addition, compound 11 exhibited IC50 values ranging 8.60-64.0 µM against a selection of cancer cell lines. These findings suggest that derivative 17 can potentially be a new lead compound for further development of novel antiproliferative agents. Additionally, 17-18 were assessed for their antibacterial and antituberculosis activity. Derivatives 17 and 18 were the most potent compounds of this series against both Staphylococcus aureus strain Wichita and a methicillin resistant strain of S. aureus (MRSA), as well as against Mycobacterium tuberculosis strain mc26230. The antiviral activity of 7-18 was also evaluated against diverse viruses, but no activity was detected. The docking study of compound 17 with putative protein targets in acute myeloid leukemia had been studied. Furthermore, the molecular dynamics simulation of 17 and 18 had been investigated.

2.
Soft Matter ; 20(14): 3161-3174, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517317

RESUMO

Motivated by strategies for targeted microfluidic transport of droplets, we investigate how sessile droplets can be steered toward a preferred direction using travelling waves in substrate wettability or deformations of the substrate. To perform our numerical study, we implement the boundary-element method to solve the governing Stokes equations for the fluid flow field inside the moving droplet. In both cases we find two distinct modes of droplet motion. For small wave speed the droplet surfs with a constant velocity on the wave, while beyond a critical wave speed a periodic wobbling motion occurs, the period of which diverges at the transition. These observation can be rationalized by the nonuniform oscillator model and the transition described by a SNIPER bifurcation. For the travelling waves in wettability the mean droplet velocity in the wobbling state decays with the inverse wave speed. In contrast, for travelling-wave deformations of the substrate it is proportional to the wave speed at large speed values since the droplet always has to move up and down. To rationalize this behavior, the nonuniform oscillator model has to be extended. Since the critical wave speed of the bifurcation depends on the droplet radius, this dependence can be used to sort droplets by size.

3.
ACS Chem Neurosci ; 15(6): 1206-1218, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38440987

RESUMO

This study examines the properties of a novel series of 4-oxypiperidines designed and synthesized as histamine H3R antagonists/inverse agonists based on the structural modification of two lead compounds, viz., ADS003 and ADS009. The products are intended to maintain a high affinity for H3R while simultaneously inhibiting AChE or/and BuChE enzymes. Selected compounds were subjected to hH3R radioligand displacement and gpH3R functional assays. Some of the compounds showed nanomolar affinity. The most promising compound in the naphthalene series was ADS031, which contained a benzyl moiety at position 1 of the piperidine ring and displayed 12.5 nM affinity at the hH3R and the highest inhibitory activity against AChE (IC50 = 1.537 µM). Eight compounds showed over 60% eqBuChE inhibition and hence were qualified for the determination of the IC50 value at eqBuChE; their values ranged from 0.559 to 2.655 µM. Therapy based on a multitarget-directed ligand combining H3R antagonism with additional AChE/BuChE inhibitory properties might improve cognitive functions in multifactorial Alzheimer's disease.


Assuntos
Colinesterases , Receptores Histamínicos H3 , Estrutura Molecular , Ligantes , Histamina , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Éteres , Agonismo Inverso de Drogas , Receptores Histamínicos H3/química , Receptores Histamínicos , Relação Estrutura-Atividade
4.
EMBO J ; 43(6): 1065-1088, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383864

RESUMO

The B complex is a key intermediate stage of spliceosome assembly. To improve the structural resolution of monomeric, human spliceosomal B (hB) complexes and thereby generate a more comprehensive hB molecular model, we determined the cryo-EM structure of B complex dimers formed in the presence of ATP γ S. The enhanced resolution of these complexes allows a finer molecular dissection of how the 5' splice site (5'ss) is recognized in hB, and new insights into molecular interactions of FBP21, SNU23 and PRP38 with the U6/5'ss helix and with each other. It also reveals that SMU1 and RED are present as a heterotetrameric complex and are located at the interface of the B dimer protomers. We further show that MFAP1 and UBL5 form a 5' exon binding channel in hB, and elucidate the molecular contacts stabilizing the 5' exon at this stage. Our studies thus yield more accurate models of protein and RNA components of hB complexes. They further allow the localization of additional proteins and protein domains (such as SF3B6, BUD31 and TCERG1) whose position was not previously known, thereby uncovering new functions for B-specific and other hB proteins during pre-mRNA splicing.


Assuntos
Splicing de RNA , Spliceossomos , Humanos , Spliceossomos/genética , Microscopia Crioeletrônica , Sítios de Splice de RNA , Éxons , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Elongação da Transcrição/genética , Proteínas Nucleares/metabolismo
5.
Adv Sci (Weinh) ; 11(15): e2307237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350720

RESUMO

Various disorders are accompanied by histamine-independent itching, which is often resistant to the currently available therapies. Here, it is reported that the pharmacological activation of Slack (Kcnt1, KNa1.1), a potassium channel highly expressed in itch-sensitive sensory neurons, has therapeutic potential for the treatment of itching. Based on the Slack-activating antipsychotic drug, loxapine, a series of new derivatives with improved pharmacodynamic and pharmacokinetic profiles is designed that enables to validate Slack as a pharmacological target in vivo. One of these new Slack activators, compound 6, exhibits negligible dopamine D2 and D3 receptor binding, unlike loxapine. Notably, compound 6 displays potent on-target antipruritic activity in multiple mouse models of acute histamine-independent and chronic itch without motor side effects. These properties make compound 6 a lead molecule for the development of new antipruritic therapies targeting Slack.


Assuntos
Loxapina , Canais de Potássio , Camundongos , Animais , Canais de Potássio/metabolismo , Canais de Potássio/uso terapêutico , Histamina/metabolismo , Histamina/uso terapêutico , Antipruriginosos/uso terapêutico , Prurido/tratamento farmacológico , Prurido/metabolismo , Loxapina/uso terapêutico
6.
Soft Matter ; 20(8): 1800-1814, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38305449

RESUMO

By patterning activity in space, one can control active turbulence. To show this, we use Doi's hydrodynamic equations of a semidilute solution of active rods. A linear stability analysis reveals the resting isotropic fluid to be unstable above an absolute pusher activity. The emergent activity-induced paranematic state displays active turbulence, which we characterize by different quantities including the energy spectrum, which shows the typical power-law decay with exponent -4. Then, we control the active turbulence by a square lattice of circular spots where activity is switched off. In the parameter space lattice constant versus surface-to-surface distance of the spots, we identify different flow states. Most interestingly, for lattice constants below the vorticity correlation length and for spot distances smaller than the nematic coherence length, we observe a multi-lane flow state, where flow lanes with alternating flow directions are separated by a street of vortices. The flow pattern displays pronounced multistability and also appears transiently at the transition to the isotropic active-turbulence state. At larger lattice constants a trapped vortex state is identified with a non-Gaussian vorticity distribution due to the low flow vorticity at the spots. It transitions to conventional active turbulence for increasing spot distance.

7.
Br J Pharmacol ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157867

RESUMO

BACKGROUND AND PURPOSE: Neuropathic pain affects up to 10% of the global population and is caused by an injury or a disease affecting the somatosensory, peripheral, or central nervous system. NP is characterized by chronic, severe and opioid-resistant properties. Therefore, its clinical management remains very challenging. The N-type voltage-gated calcium channel, Cav 2.2, is a validated target for therapeutic intervention in chronic and neuropathic pain. The conotoxin ziconotide (Prialt®) is an FDA-approved drug that blocks Cav 2.2 channel but needs to be administered intrathecally. Thus, although being principally efficient, the required application route is very much in disfavour. EXPERIMENTAL APPROACH AND KEY RESULTS: Here, we describe an orally available drug candidate, RD2, which competes with ziconotide binding to Cav 2.2 at nanomolar concentrations and inhibits Cav 2.2 almost completely reversible. Other voltage-gated calcium channel subtypes, like Cav 1.2 and Cav 3.2, were affected by RD2 only at concentrations higher than 10 µM. Data from sciatic inflammatory neuritis rat model demonstrated the in vivo proof of concept, as low-dose RD2 (5 mg·kg-1 ) administered orally alleviated neuropathic pain compared with vehicle controls. High-dose RD2 (50 mg·kg-1 ) was necessary to reduce pain sensation in acute thermal response assessed by the tail flick test. CONCLUSIONS AND IMPLICATIONS: Taken together, these results demonstrate that RD2 has antiallodynic properties. RD2 is orally available, which is the most convenient application form for patients and caregivers. The surprising and novel result from standard receptor screens opens the room for further optimization into new promising drug candidates, which address an unmet medical need.

8.
Cell ; 186(23): 5054-5067.e16, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37949058

RESUMO

Fatty acids (FAs) play a central metabolic role in living cells as constituents of membranes, cellular energy reserves, and second messenger precursors. A 2.6 MDa FA synthase (FAS), where the enzymatic reactions and structures are known, is responsible for FA biosynthesis in yeast. Essential in the yeast FAS catalytic cycle is the acyl carrier protein (ACP) that actively shuttles substrates, biosynthetic intermediates, and products from one active site to another. We resolve the S. cerevisiae FAS structure at 1.9 Å, elucidating cofactors and water networks involved in their recognition. Structural snapshots of ACP domains bound to various enzymatic domains allow the reconstruction of a full yeast FA biosynthesis cycle. The structural information suggests that each FAS functional unit could accommodate exogenous proteins to incorporate various enzymatic activities, and we show proof-of-concept experiments where ectopic proteins are used to modulate FAS product profiles.


Assuntos
Proteína de Transporte de Acila , Ácidos Graxos , Saccharomyces cerevisiae , Proteína de Transporte de Acila/química , Domínio Catalítico , Ácidos Graxos/biossíntese , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Eur J Cell Biol ; 102(3): 151337, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392580

RESUMO

Different studies corroborate a role for ceramide synthases and their downstream products, ceramides, in modulation of apoptosis and autophagy in the context of cancer. These mechanisms of regulation, however, appear to be context dependent in terms of ceramides' fatty acid chain length, subcellular localization, and the presence or absence of their downstream targets. Our current understanding of the role of ceramide synthases and ceramides in regulation of apoptosis and autophagy could be harnessed to pioneer the development of new treatments to activate or inhibit a single type of ceramide synthase, thereby regulating the apoptosis induction or cross talk of apoptosis and autophagy in cancer cells. Moreover, the apoptotic function of ceramide suggests that ceramide analogues can pave the way for the development of novel cancer treatments. Therefore, in the current review paper we discuss the impact of ceramide synthases and ceramides in regulation of apoptosis and autophagy in context of different types of cancers. We also briefly introduce the latest information on ceramide synthase inhibitors, their application in diseases including cancer therapy, and discuss approaches for drug discovery in the field of ceramide synthase inhibitors. We finally discussed strategies for developing strategies to use lipids and ceramides analysis in biological fluids for developing early biomarkers for cancer.


Assuntos
Ceramidas , Neoplasias , Humanos , Ceramidas/farmacologia , Apoptose , Autofagia
10.
J Med Chem ; 66(14): 9658-9683, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37418295

RESUMO

In search of new dual-acting histamine H3/sigma-1 receptor ligands, we designed a series of compounds structurally based on highly active in vivo ligands previously studied and described by our team. However, we kept in mind that within the previous series, a pair of closely related compounds, KSK67 and KSK68, differing only in the piperazine/piperidine moiety in the structural core showed a significantly different affinity at sigma-1 receptors (σ1Rs). Therefore, we first focused on an in-depth analysis of the protonation states of piperazine and piperidine derivatives in the studied compounds. In a series of 16 new ligands, mainly based on the piperidine core, we selected three lead structures (3, 7, and 12) for further biological evaluation. Compound 12 showed a broad spectrum of analgesic activity in both nociceptive and neuropathic pain models based on the novel molecular mechanism.


Assuntos
Neuralgia , Receptores Histamínicos H3 , Receptores sigma , Humanos , Histamina , Receptores Histamínicos H3/química , Ligantes , Nociceptividade , Piperazina , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Piperidinas/química , Neuralgia/tratamento farmacológico , Relação Estrutura-Atividade
11.
Eur Phys J E Soft Matter ; 46(6): 48, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37335344

RESUMO

We employ Q learning, a variant of reinforcement learning, so that an active particle learns by itself to navigate on the fastest path toward a target while experiencing external forces and flow fields. As state variables, we use the distance and direction toward the target, and as action variables the active particle can choose a new orientation along which it moves with constant velocity. We explicitly investigate optimal navigation in a potential barrier/well and a uniform/ Poiseuille/swirling flow field. We show that Q learning is able to identify the fastest path and discuss the results. We also demonstrate that Q learning and applying the learned policy works when the particle orientation experiences thermal noise. However, the successful outcome strongly depends on the specific problem and the strength of noise.

12.
Annu Rev Biophys ; 52: 391-411, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37159297

RESUMO

Single particle cryo-electron microscopy (cryo-EM) has matured into a robust method for the determination of biological macromolecule structures in the past decade, complementing X-ray crystallography and nuclear magnetic resonance. Constant methodological improvements in both cryo-EM hardware and image processing software continue to contribute to an exponential growth in the number of structures solved annually. In this review, we provide a historical view of the many steps that were required to make cryo-EM a successful method for the determination of high-resolution protein complex structures. We further discuss aspects of cryo-EM methodology that are the greatest pitfalls challenging successful structure determination to date. Lastly, we highlight and propose potential future developments that would improve the method even further in the near future.


Assuntos
Elétrons , Imagem Individual de Molécula , Microscopia Crioeletrônica
13.
Molecules ; 28(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241939

RESUMO

Pain is a very unpleasant experience that makes life extremely uncomfortable. The histamine H4 receptor (H4R) is a promising target for the treatment of inflammatory and immune diseases, as well as pain. H4R ligands have demonstrated analgesic effects in a variety of pain models, including inflammatory pain. Continuing the search for active H4R ligands among the alkyl derivatives of 1,3,5-triazine, we obtained 19 new compounds in two series: acyclic (I) and aliphatic (II). In vitro pharmacological evaluation showed their variable affinity for H4R. The majority of compounds showed a moderate affinity for this receptor (Ki > 100 nM), while all compounds tested in ß-arrestin and cAMP assays showed antagonistic activity. The most promising, compound 6, (4-(cyclopentylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine; Ki = 63 nM) was selected for further in vitro evaluation: blood-brain barrier permeability (PAMPA assay; Pe = 12.26 × 10-6 cm/s) and toxicity tests (HepG2 and SH-5YSY cells; no toxicity up to 50 µM). Next, compound 6 tested in vivo in a carrageenan-induced inflammatory pain model showed anti-inflammatory and analgesic effects (strongest at 50 mg/kg i.p.). Furthermore, in a histamine- and chloroquine-induced pruritus model, compound 6 at a dose of 25 mg/kg i.p. and 50 mg/kg i.p., respectively, reduced the number of scratch bouts. Thus, compound 6 is a promising ligand for further studies.


Assuntos
Histamina , Triazinas , Humanos , Receptores Histamínicos H4 , Triazinas/farmacologia , Triazinas/uso terapêutico , Receptores Histamínicos , Dor/tratamento farmacológico , Ligantes , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Receptores Acoplados a Proteínas G
14.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37242458

RESUMO

This study examines the properties of novel guanidines, designed and synthesized as histamine H3R antagonists/inverse agonists with additional pharmacological targets. We evaluated their potential against two targets viz., inhibition of MDA-MB-231, and MCF-7 breast cancer cells viability and inhibition of AChE/BuChE. ADS10310 showed micromolar cytotoxicity against breast cancer cells, combined with nanomolar affinity at hH3R, and may represent a promising target for the development of an alternative method of cancer therapy. Some of the newly synthesized compounds showed moderate inhibition of BuChE in the single-digit micromolar concentration ranges. H3R antagonist with additional AChE/BuChE inhibitory effect might improve cognitive functions in Alzheimer's disease. For ADS10310, several in vitro ADME-Tox parameters were evaluated and indicated that it is a metabolically stable compound with weak hepatotoxic activity and can be accepted for further studies.

15.
Chem Biol Interact ; 381: 110542, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37224992

RESUMO

A library of 43 thiazole derivatives, including 31 previously and 12 newly synthesized in the present study, was evaluated in vitro for their inhibitory properties against bovine pancreatic DNase I. Nine compounds (including three newly synthesized) inhibited the enzyme showing improved inhibitory properties compared to that of the reference crystal violet (IC50 = 346.39 µM). Two compounds (5 and 29) stood out as the most potent DNase I inhibitors, with IC50 values below 100 µM. The 5-LO inhibitory properties of the investigated derivatives were also analyzed due to the importance of this enzyme in the development of neurodegenerative diseases. Compounds (12 and 29) proved to be the most prominent new 5-LO inhibitors, with IC50 values of 60 nM and 56 nM, respectively, in cell-free assay. Four compounds, including one previously (41) and three newly (12, 29 and 30) synthesized, have the ability to inhibit DNase I with IC50 values below 200 µM and 5-LO with IC50 values below 150 nM in cell-free assay. Molecular docking and molecular dynamics simulations were used to clarify DNase I and 5-LO inhibitory properties of the most potent representatives at the molecular level. The newly synthesized compound 29 (4-((4-(3-bromo-4-morpholinophenyl)thiazol-2-yl)amino)phenol) represents the most promising dual DNase I and 5-LO inhibitor, as it inhibited 5-LO in the nanomolar and DNase I in the double-digit micromolar concentration ranges. The results obtained in the present study, together with our recently published results for 4-(4-chlorophenyl)thiazol-2-amines, represent a good basis for the development of new neuroprotective therapeutics based on dual inhibition of DNase I and 5-LO.


Assuntos
Fármacos Neuroprotetores , Tiazóis , Animais , Bovinos , Relação Estrutura-Atividade , Tiazóis/farmacologia , Tiazóis/química , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Araquidonato 5-Lipoxigenase , Desoxirribonuclease I , Inibidores de Lipoxigenase/farmacologia , Estrutura Molecular
16.
Structure ; 31(6): 689-699.e6, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119821

RESUMO

Tryptophan hydroxylase 2 (TPH2) catalyzes the rate-limiting step in serotonin biosynthesis in the brain. Consequently, regulation of TPH2 is relevant for serotonin-related diseases, yet the regulatory mechanism of TPH2 is poorly understood and structural and dynamical insights are missing. We use NMR spectroscopy to determine the structure of a 47 N-terminally truncated variant of the regulatory domain (RD) dimer of human TPH2 in complex with L-Phe, and show that L-Phe is the superior RD ligand compared with the natural substrate, L-Trp. Using cryo-EM, we obtain a low-resolution structure of a similarly truncated variant of the complete tetrameric enzyme with dimerized RDs. The cryo-EM two-dimensional (2D) class averages additionally indicate that the RDs are dynamic in the tetramer and likely exist in a monomer-dimer equilibrium. Our results provide structural information on the RD as an isolated domain and in the TPH2 tetramer, which will facilitate future elucidation of TPH2's regulatory mechanism.


Assuntos
Serotonina , Triptofano Hidroxilase , Humanos , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/química , Ligantes
17.
Soft Matter ; 19(12): 2241-2253, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36912619

RESUMO

In recent years, nonlinear microfluidics in combination with lab-on-a-chip devices has opened a new avenue for chemical and biomedical applications such as droplet formation and cell sorting. In this article, we integrate ideas from active matter into a microfluidic setting, where two fluid layers with identical densities but different viscosities flow through a microfluidic channel. Most importantly, the fluid interface is laden with active particles that act with dipolar forces on the adjacent fluids and thereby generate flows. We perform lattice-Boltzmann simulations and combine them with phase field dynamics of the interface and an advection-diffusion equation for the density of active particles. We show that only contractile force dipoles can destabilize the flat fluid interface. It develops a viscous finger from which droplets break up. For interfaces with non-zero surface tension, a critical value of activity equal to the surface tension is necessary to trigger the instability. Since activity depends on the density of force dipoles, the interface can develop steady deformation. Lastly, we demonstrate how to control droplet formation using switchable activity.

18.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903593

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder, for which there is no effective cure. Current drugs only slow down the course of the disease, and, therefore, there is an urgent need to find effective therapies that not only treat, but also prevent it. Acetylcholinesterase inhibitors (AChEIs), among others, have been used for years to treat AD. Histamine H3 receptors (H3Rs) antagonists/inverse agonists are indicated for CNS diseases. Combining AChEIs with H3R antagonism in one structure could bring a beneficial therapeutic effect. The aim of this study was to find new multitargetting ligands. Thus, continuing our previous research, acetyl- and propionyl-phenoxy-pentyl(-hexyl) derivatives were designed. These compounds were tested for their affinity to human H3Rs, as well as their ability to inhibit cholinesterases (acetyl- and butyrylcholinesterases) and, additionally, human monoamine oxidase B (MAO B). Furthermore, for the selected active compounds, their toxicity towards HepG2 or SH-SY5Y cells was evaluated. The results showed that compounds 16 (1-(4-((5-(azepan-1-yl)pentyl)oxy)phenyl)propan-1-one) and 17 (1-(4-((6-(azepan-1-yl)hexyl)oxy)phenyl)propan-1-one) are the most promising, with a high affinity for human H3Rs (Ki: 30 nM and 42 nM, respectively), a good ability to inhibit cholinesterases (16: AChE IC50 = 3.60 µM, BuChE IC50 = 0.55 µM; 17: AChE IC50 = 1.06 µM, BuChE IC50 = 2.86 µM), and lack of cell toxicity up to 50 µM.


Assuntos
Doença de Alzheimer , Neuroblastoma , Receptores Histamínicos H3 , Humanos , Histamina , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Agonismo Inverso de Drogas , Receptores Histamínicos H3/química , Inibidores da Colinesterase/química , Receptores Histamínicos , Monoaminoxidase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Ligantes
19.
J Enzyme Inhib Med Chem ; 38(1): 2175821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36789662

RESUMO

Neurodegenerative diseases such as Alzheimer's disease (AD) are multifactorial with several different pathologic mechanisms. Therefore, it is assumed that multitargeted-directed ligands (MTDLs) which interact with different biological targets relevant to the diseases, might offer an improved therapeutic alternative than using the traditional "one-target, one-molecule" approach. Herein, we describe new benzothiazole-based derivatives as a privileged scaffold for histamine H3 receptor ligands (H3R). The most affine compound, the 3-(azepan-1-yl)propyloxy-linked benzothiazole derivative 4b, displayed a Ki value of 0.012 µM. The multitargeting potential of these H3R ligands towards AChE, BuChE and MAO-B enzymes was evaluated to yield compound 3s (pyrrolidin-1-yl-(6-((5-(pyrrolidin-1-yl)pentyl)oxy)benzo[d]thiazol-2-yl)methanone) as the most promising MTDL with a Ki value of 0.036 µM at H3R and IC50 values of 6.7 µM, 2.35 µM, and 1.6 µM towards AChE, BuChE, and MAO-B, respectively. These findings suggest that compound 3s can be a lead structure for developing new multi-targeting anti-AD agents.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Benzotiazóis/farmacologia , Ligantes
20.
Eur J Pharmacol ; 945: 175533, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36690055

RESUMO

BACKGROUND: Histamine has been postulated to play a role in atopic dermatitis via histamine receptor 4, mediating pruritic and inflammatory effects. The H4R antagonist adriforant (PF-3893787 or ZPL389) indicated clinical efficacy in a Ph2a study in atopic dermatitis. Preclinical investigations of adriforant had been scarce as experiments in transfectants with H4R from several species suggested partial agonism, not seen in human cells. OBJECTIVE: During the Ph2b trial in AD, we performed experiments to understand the pharmacology of adriforant in primary murine cells and in vivo models. We assessed its effects on ERK phosphorylation and transcriptional changes in bone marrow-derived mast cells, histamine-dependent Ca2+ flux in neurons and histamine-induced itch response. In addition, its impact on MC903-induced skin inflammation was evaluated. RESULTS: We show that, contrary to transfectants, adriforant is a competitive antagonist of the murine histamine receptor 4, antagonizes histamine-induced ERK phosphorylation, normalizes histamine-induced transcriptional changes in mast cells and reduces histamine-dependent Ca2+ flux in neurons. Administration to mice reduces acute histamine-induced itch response. In addition, adriforant ameliorates inflammation in the mouse MC903 model. CONCLUSIONS: Our results suggest that functional inhibition of histamine receptor 4 by adriforant reduces itch and inflammation in vivo. The effects observed in mice, however, did not translate to clinical efficacy in patients as the Ph2b clinical trial with adriforant did not meet pre-specified efficacy endpoints. Given the complex pathogenesis of AD, antagonism of histamine receptor 4 alone appears insufficient to reduce disease severity in AD patients, despite the effects seen in mouse models.


Assuntos
Dermatite Atópica , Humanos , Camundongos , Animais , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/induzido quimicamente , Histamina/farmacologia , Prurido/induzido quimicamente , Prurido/tratamento farmacológico , Receptores Histamínicos , Inflamação/tratamento farmacológico , Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...